All Random Solved Random Open
Let $G$ be a graph of maximum degree $\Delta$. Is $G$ the union of at most $\tfrac{5}{4}\Delta^2$ sets of strongly independent edges (sets such that the induced subgraph is the union of vertex-disjoint edges)?
Asked by Erdős and Nešetřil. They also asked the easier problem of whether $G$ containing at least $\tfrac{5}{4}\Delta^2$ many edges implies $G$ containing two strongly independent edges. This was proved independently by Chung-Trotter and Gyárfás-Tuza.