OPEN - $10000

Let $r_k(N)$ be the largest possible size of a subset of $\{1,\ldots,N\}$ that does not contain any non-trivial $k$-term arithmetic progression. Prove an asymptotic formula for $r_k(N)$.

Erdős remarked this is 'probably unattackable at present'. In [Er97c] Erdős offered \$1000, but given that he elsewhere offered \$5000 just for (essentially) showing that $r_k(N)=o_k(N/\log N)$, that value seems odd. In [Er81] he offers \$10000, stating it is 'probably enormously difficult'.

The best known upper bounds for $r_k(N)$ are due to Kelley and Meka [KeMe23] for $k=3$, Green and Tao [GrTa17] for $k=4$, and Leng, Sah, and Sawhney [LSS24] for $k\geq 5$. An asymptotic formula is still far out of reach, even for $k=3$.