Is it true that \[\sum_{n\in A}\frac{1}{n}<\infty?\]
Is it true that \[\sum_{n\in A}\frac{1}{n}<\infty?\]
An example of an $A$ with this property where \[\liminf \frac{\lvert A\cap\{1,\ldots,N\}\rvert}{N^{1/2}}\log N>0\] is given by the set of $p^2$, where $p\equiv 3\pmod{4}$ is prime.
Elsholtz and Planitzer [ElPl17] have constructed such an $A$ with \[\lvert A\cap\{1,\ldots,N\}\rvert\gg \frac{N^{1/2}}{(\log N)^{1/2}(\log\log N)^2(\log\log\log N)^2}.\]
Schoen [Sc01] proved that if all elements in $A$ are pairwise coprime then \[\lvert A\cap\{1,\ldots,N\}\rvert \ll N^{2/3}\] for infinitely many $N$. Baier [Ba04] has improved this to $\ll N^{2/3}/\log N$.
For the finite version see [13].
This problem has been formalised in Lean as part of the Google DeepMind Formal Conjectures project.