SOLVED

Let $p(z)=\prod_{i=1}^n (z-z_i)$ for $\lvert z_i\rvert \leq 1$. Then the area of the set where \[A=\{ z: \lvert p(z)\rvert <1\}\]
is $>n^{-O(1)}$ (or perhaps even $>(\log n)^{-O(1)}$).

Conjectured by Erdős, Herzog, and Piranian [ErHePi58]. The lower bound $\mu(A) \gg n^{-4}$ follows from a result of Pommerenke [Po61]. The stronger lower bound $\gg (\log n)^{-O(1)}$ is still open.

Wagner [Wa88] proves, for $n\geq 3$, the existence of such polynomials with \[\mu(A) \ll_\epsilon (\log\log n)^{-1/2+\epsilon}\] for all $\epsilon>0$.